Mongabay.com is considered a leading source of information on tropical forests by some of the world's top ecologists and conservationists. TROPICAL RAINFORESTS: Disappearing Opportunities
Slash-and-burn agriculture in the rainforest of Borneo
Slash-and-burn agriculture in the rainforest of Borneo. Click image for more pictures. (Photo by R. Butler)

LOSS OF SPECIES FOR FOREST REGENERATION

By Rhett Butler   |  Last updated July 22, 2012

A fully functioning forest has a great capacity to regenerate. But exhaustive hunting of tropical rainforest wildlife can reduce those species necessary to forest continuance and regeneration. For example, in Central Africa, the loss of species like gorillas, chimps, and elephants undercuts the seed dispersal and slows the recovery of damaged forest.

Loss of habitat in the tropics also affects the regeneration of temperate species. North American migratory birds, important seed dispersers of temperate species, declined 1-3 percent annually from 1978-1988.


INCREASE OF TROPICAL DISEASES


The emergence of tropical diseases and outbreaks of new diseases, including nasty hemorrhagic fevers like ebola and lassa fever, are a subtle but serious impact of deforestation. With increased human presence in the rainforest, and exploiters pushing into deeper areas, humans are encountering microorganisms with behaviors unlike those previously known. As the primary hosts of these pathogens are eliminated or reduced through forest disturbance and degradation, disease can break out among humans. Although not unleashed yet, someday one of these microscopic killers could lead to a massive epidemic as deadly for our species as we have been for the species of the rainforest. Until then, local populations will continue to be menaced by mosquito-borne diseases like dengue fever, Rift Valley fever, and malaria, and water-borne diseases like cholera.

Many emergent and resurgent diseases are directly linked to land alterations which bring humans in closer contact with such pathogens. For example, malaria and snailborne schistosomiasis have escalated because of the proliferation of artificial pools of water like dams, rice paddies, drainage ditches, irrigation canals, and puddles created by tractor treads. Malaria is a particular problem in deforested and degraded areas, though less so in forested zones where there are few stagnant ground pools for mosquito breeding. These pools are most abundant in cleared regions and areas where tractors tear gashes in the earth.

Malaria — which is estimated to infect 300 million people a year worldwide, killing 1-2 million — is a major threat to forest-dwelling indigenous peoples who have developed little or no (in the case of uncontacted tribes) resistance to the disease and lack access to antimalarial drugs. Malaria in the 1990s was cited for killing an estimated 20 percent of the Yanomani in Brazil and Venezuela. Drug-resistant forms of malaria means the disease is again becoming a threat in places where it was thought to be under control. Models suggest that climate change could expand the distribution of malaria-carrying mosquitos.

Disease-Environment articles

  • Emerging (disease) markets
  • Clearing rainforest for cattle pasture drives surge in vampires
  • Ebola outbreaks may worsen with global warming
  • Demise of passenger pigeon may be linked to Lyme disease
  • Environmental damage linked to new diseases says WHO
  • Controlling Wildlife Trade Key to Preventing Disease Outbreaks, Study Says
  • Ebola, SARS battle requires new look at humans, livestock, and wildlife relationships
  • The outbreak of disease in the tropics does not affect only the people of those countries, since virtually any disease can be incubated for enough time to allow penetration into the temperate developed countries. For example, a Central African doctor infected with the ebola virus from a patient can board a plane and land in London within 10 hours. The virus could quickly spread among the city's large population Additionally, every person at the airport who is exposed can unknowingly carry the pathogen home to their native countries around the world.

    According to the Centers for Disease Control (CDC) in Atlanta, deaths from infectious disease are on the rise. Infectious disease is the leading cause of death worldwide and the third leading cause of death in the United States. Infectious disease have had a major role in human mortality throughout history. At least one-third of human deaths during World War I came from an infectious disease: influenza. In 1919, between 20 million and 100 million died from the flu—more than the number of total casualties from the war.





    Review questions:

    • How is deforestation linked to the emergence of disease?

    Other versions of this page

    spanish | french | portuguese | chinese | japanese



    Continued / Next:

    Loss of Renewable Resources, Wildlife Conflict




    Other pages in this section:

    Consequences of Deforestation
    Erosion
    Loss of Renewable Resources
    Atmospheric Role
    - - - - -
    References
    References
    References
    References
    References
    Local Climate Regulation
    Loss of Species, Disease
    Climactic Role
    Extinction
    - - - - -
    Kids version of this section
    - Why are rainforests important?
    - Climate
    - Home to wildlife
    - Water cycle
    - Erosion control
    - Extinction


    Selection of information sources

  • The decline in North American migratory birds over the 1978-1988 period is reported by the U.S. Fish and Wildlife Service in its Breeding Birds Survey 1990 and further detailed in Terborgh, J.W., Where Have All the Birds Gone? Essays on the Biology and Conservation of Birds that Migrate to the American Tropics, Princeton: Princeton University Press 1989.
  • H.J. Van der Kaay discusses the threat of emerging pathogens resulting from increased forest loss and contact with primary disease hosts in "Human diseases in relation to the degradation of tropical rainforests," Rainforest Medical Bulletin, Vol. 5, no. 3, Dec. 1998.
  • In her work, The Coming Plague (New York: Farrar, Straus, and Giroux, 1994), L. Garrett reviews the gamut newly emerging diseases and suggests the importance of deforestation in bringing some pathogens in closer contact with human populations. For a popular and thrilling account of one such virus, the hemorrhagic Ebola virus, read R. Preston's The Hot Zone (New York: Random House, 1994). S. Morse, ed. also provides a comprehensive overview in Emerging Viruses, New York: Oxford University Press, 1993.
  • Y. Baskin discusses the role of human activities in creating new disease vectors in the tropics ("The Work Of Nature," Discover Vol. 16, No. 8, Aug 1995).
  • The Rainforest Action Network (RAN 1994) estimates the death rate from malaria among the Yanomani in Brazil and Venezuela at 20%.
  • Martin and Lefebvre raise the concern that global climate change will impact the distribution of malaria in "Malaria and climate: sensitivity of malaria potential transmission to climate," Ambio Vol. 24 No. 4, June 1995, while Binder et al. estimates malaria pediatric fatalities in Sub-Saharan Africa in "Emerging infectious diseases: public health issue for the 21st century," Science Vol. 284, No. 5418 (1311-1313) 21-May-1999.
  • According to Binder et al., infectious disease is the leading cause of death worldwide and the third leading cause of death in the United States ("Emerging infectious diseases: public health issue for the 21st century," Science Vol. 284, No. 5418 (1311-1313) 21-May-1999).
  • The U.S. Centers for Disease Control (CDC) reported to a congressional committee in 1997 that 10% of people who died before the age of 50 in 1994 did so suddenly and mysteriously possibly from some unidentified infection. In addition, the CDC noted that the U.S. spent only $42 million annually on infectious disease surveillance.
  • In the World Population Profile: 1998 (U.S. Government Printing Office, Washington, DC, 1999), the U.S. Bureau of the Census revealed the sobering impact of AIDS in the developing world.
  • E. Hooper (The River, Boston: Little, Brown and Company 1999) provides an excellent overview of the theories on origin of AIDS. He discusses the merits each of these in the course of describing the OVP/AIDS hypothesis he has come to adopt. This hypothesis says AIDS originated from the contimanation of a live polio vaccine with a simian immunodeficiency virus (SIV) during the mid to late-1950s. The other leading hypothesis, that of a "natural transfer" between SIV-infected chimpanzees and humans, is promoted in a widely read paper by F. Gao et al. ("Origin of HIV-1 in the Chimpanzee Pan troglodytes troglodytes," Nature, Vol. 397 (436-441), 1999).
  • At the 7th Conference on Retroviruses and Opportunistic Infections in San Francisco, B. Korber announced that the Los Alamos National Laboratory had traced the divergence of AIDS from SIV to around 1930 (Korber, B. et al., "HIV Databases and Analysis Projects at Los Alamos: An Overview," 1/30/00). The study assumed genetic changes in the virus occur at a constant rate. Should this dating prove correct it would undermine OPV/AIDS hypothesis supported by Hopper 1999.





  • For kids

    Tour: the Amazon

    Rainforest news

    Tour: Indonesia's rainforests

     Home
     What's New
     About
     Rainforests
       Mission
       Introduction
       Characteristics
       Biodiversity
       The Canopy
       Forest Floor
       Forest Waters
       Indigenous People
       Deforestation
       Consequences
       Saving Rainforests
       Amazon
       Borneo
       Congo
       New Guinea
       Sulawesi
       REDD
       Country Profiles
       Statistics
       Works Cited
       For Kids
       For Teachers
       Photos/Images
       Expert Interviews
       Rainforest News
      Forest data
       Global deforestation
       Tropical deforestation
       By country
       Deforestation charts
       Regional forest data
       Deforestation drivers
     XML Feeds
     Pictures
     Books
     Education
     Newsletter
     Contact

    Nature Blog Network



     CONTENTS
    Rainforests
    Tropical Fish
    News
    Madagascar
    Pictures
    Kids' Site
    Languages
    TCS Journal
    About
    Archives
    Topics | RSS
    Newsletter




     Other languages
    Arabic
    Bengali
    Chinese (CN) (expanded)
    Chinese (TW)
    Croatian
    Danish
    Dutch
    Farsi
    French (expanded)
    German (expanded)
    Greek
    Hindi
    Hungarian
    Indonesian
    Italian
    Japanese (expanded)
    Javanese
    Korean
    Malagasy
    Malay
    Marathi
    Norwegian
    Polish
    Portuguese (expanded)
    Russian
    Slovak
    Spanish (expanded)
    Swahili
    Swedish
    Ukrainian



     WEEKLY NEWSLETTER
     Email:


     INTERACT
    Facebook
    Twitter
    Contact
    Help
    Photo store
    Mongabay gear




    Recent news

    Hitchhiking Caribbean lizard upends island biogeography theory
    (09/26/2014) The biggest factor determining species diversity and distribution on islands is not size and isolation, as traditional island biogeography theory states, but economics. Simply put, the more trade an island is engaged in, the more boats visit it, and with more boats comes more hitchhikers.


    Extinction island? Plans to log half an island could endanger over 40 species
    (09/22/2014) Woodlark Island is a rare place on the planet today. This small island off the coast Papua New Guinea is still covered in rich tropical forest, an ecosystem shared for thousands of years between tribal peoples and a plethora of species, including at least 42 found no-where else. Yet, like many such wildernesses, Woodlark Island is now facing major changes: not the least of them is a plan to log half of the island.


    Protected areas do work, concludes study
    (09/15/2014) Protected areas are working. That's the conclusion of a new analysis of over 80 different studies on the efficacy of parks and nature reserves in safeguarding wildlife. Published in the open access journal, PLOS ONE, the new study finds that in general protected areas house higher abundances of wildlife as well as greater biodiversity than adjacent areas.



    More news on biodiversity


    More rainforest news



    what's new | rainforests home | for kids | help | madagascar | search | about | languages | contact

    Copyright Rhett Butler 1994-2013

    Carbon dioxide (CO2) emissions generated from mongabay.com operations (server, data transfer, travel) are mitigated through an association with Anthrotect,
    an organization working with Afro-indigenous and Embera communities to protect forests in Colombia's Darien region.
    Anthrotect is protecting the habitat of mongabay's mascot: the scale-crested pygmy tyrant.

    "Rainforest" is used interchangeably with "rain forest" on this site. "Jungle" is generally not used.