is considered a leading source of information on tropical forests by some of the world's top ecologists and conservationists. TROPICAL RAINFORESTS: Saving What Remains
Tiriyo (Trio) shaman in southern Suriname
Tiriyo (Trio) shaman in southern Suriname. (Photo by R. Butler)


By Rhett Butler   |  Last updated July 22, 2012

Plants have broader uses than as just food and a genetic reservoir. Increasingly, rainforest plants, and to a lesser extent rainforest animals, are the source of compounds useful for medicinal purposes.

The rainforest has been called the ultimate chemical laboratory with each rainforest species experimenting with various chemical defenses to ensure survival in the harsh world of natural selection. They have been synthesizing these compounds for millions of years to protect against predators, infection, pests, and disease. This makes rainforest species an excellent reservoir of medicines and chemical templates with which researchers can create new drugs.

Rainforest plants have already provided tangible evidence of their potential with remedies for a range of medical problems, from childhood leukemia to toothaches. Seventy percent of the plants identified as having anti-cancer characteristics by the US National Cancer Institute are found only in the tropical rainforest. Some examples of rainforest plants responsible for 25 percent of the drugs used by Western medicine are included in this table.

Despite all their promise, fewer than 10 percent of tropical forest plant species (and 0.1 percent of animal species) have been examined for their chemical compounds and medicinal value. Once a plant with the desired qualities is discovered, it is rigorously analyzed for its chemical structure, then goes through clinical trials for effectiveness and safety before getting final approval from the US FDA. Nevertheless, using rainforest species for derivation and synthesis of medicinal compounds, is becoming a mainstream process. In 1983 there were no U.S. pharmaceutical firms involved in research on such plants. Today there are well over 100 corporations, and U.S. government agencies are studying rainforest plants for their medicinal capacities.

One such organization, the U.S. National Cancer Institute, maintains screening of rainforest species for anti-cancer and anti-HIV effects. Because there are so many plant species, researchers concentrate on close relatives of plants already known to produce useful compounds. Another method is to choose plants that display characteristics indicating they have an effect on animals, like deterring insect pests. Many chemicals toxic to insects show bio-activity in humans meaning they may have drug promise.


Losing nature's medicine cabinet

(10/04/2010) In all the discussions of saving the world's biodiversity from extinction, one point is often and surprisingly forgotten: the importance of the world's species in providing humankind with a multitude of life-saving medicines so far, as well as the certainty that more vital medications are out there if only we save the unheralded animals and plants that contain cures unknown. Already, species have provided humankind everything from quinine to aspirin, from morphine to numerous cancer and HIV-fighting drugs. "As the ethnobotanist Dr. Mark Plotkin commented, the history of medicine can be written in terms of its reliance on and utilization of natural products," physician Christopher Herndon told Herndon is co-author of a recent paper in the journal Biotropica, which calls for policy-makers and the public to recognize how biodiversity underpins not only ecosystems, but medicine.

How rainforest shamans treat disease

(11/10/2009) Ethnobotanists, people who study the relationship between plants and people, have long documented the extensive use of medicinal plants by indigenous shamans in places around the world, including the Amazon. But few have reported on the actual process by which traditional healers diagnose and treat disease. A new paper, published in the Journal of Ethnobiology and Ethnomedicine, moves beyond the cataloging of plant use to examine the diseases and conditions treated in two indigenous villages deep in the rainforests of Suriname. The research, which based on data on more than 20,000 patient visits to traditional clinics over a four-year period, finds that shamans in the Trio tribe have a complex understanding of disease concepts, one that is comparable to Western medical science. Trio medicine men recognize at least 75 distinct disease conditions—ranging from common ailments like fever [këike] to specific and rare medical conditions like Bell's palsy [ehpijanejan] and distinguish between old (endemic) and new (introduced since contact with the outside world) illnesses. In an interview with, Lead author Christopher Herndon, currently a reproductive medicine physician at the University of California, San Francisco, says the findings are a testament to the under-appreciated healing prowess of indigenous shaman.

70% of new drugs come from Mother Nature 3/20/2007
Around 70 percent of all new drugs introduced in the United States in the past 25 years have been derived from natural products reports a study published in the March 23 issue of the Journal of Natural Products. The findings show that despite increasingly sophisticated techniques to design medications in the lab, Mother Nature is still the best drug designer.

Anti-HIV drug from rainforest almost lost before its discovery September 13, 2005
Rainforest plants have long been recognized for their potential to provide healing compounds. Indigenous peoples of the rainforest have used medicinal plants for treating a wide variety of health conditions, while western pharmacologists have derived a number of drugs from such plants. However, as forests around the world continue to fall—the Amazon alone has lost more than 200,000 square miles of forest since the 1970s—there is a real risk that pharmaceutically-useful plants will disappear before they are examined for their chemical properties. Increasingly, it is becoming a race against time to collect and screen plants before their native habitats are destroyed. One near miss occurred recently with a compound that has shown significant anti-HIV effects.

How did rainforest shamans gain their boundless knowledge on medicinal plants? The short answer—no one really knows May 14, 2005
Ethnobotanists, people who study the relationship between plants and people, have long been aware that rainforest dwellers have an astounding knowledge of medicinal plants. For thousands of years, indigenous groups have used rainforest plants extensively for their health needs—the peoples of Southeast Asian forests used 6,500 species, while Northwest Amazonian forest dwellers used 1,300 species for medicinal purposes. Today pharmacologists and ethnobotanists work with native healers and shamans in identifying prospects for development of new drugs.

More articles below
Indigenous uses of plants can also offer hints of potentially useful plants. For thousands of years, indigenous groups have extensively used rainforest plants for their health needs. They have experimented with a wide range of plants. The peoples of Southeast Asian forests used 6,500 species, while Northwest Amazonian forest dwellers used at least 1,300 species for medicinal purposes. The success rate for discovering medicinal plants with traditional uses is high because rainforest peoples, notably shamans, have been experimenting with various combinations and dosages for generations. A 1990s study in Samoa found that 86 percent of the plants used by local healers yielded biological activity in humans.

The National Cancer Institute can rapidly screen compounds for activity against 60 cancer types. When the compound shows promise, chemists isolate the molecules responsible for the activity and then compare the molecular structure with that of known chemicals. Sometimes the molecule already has been identified, but is not used medicinally; at other times the molecule will be altered to produce the desired action. If the molecule has potential as a drug, it is tested for certain characteristics including safety, effectiveness, and side effects. If it passes those tests, a corporation or government agency must finance bringing the drug to market—a process that costs more than $800 million and may take a decade or more. Before reaching the public market, the drug must go through rigorous clinical trials. According to the Global Bioscience Development Institute, for every 10,000 to 20,000 compounds screened for possible activity in the basic-research stage, about 250 make it as far as pre-clinical testing. Of those, five drug candidates make it as far as clinical trials, and only one becomes an actual FDA-approved drug. Thus the process of bringing a rainforest drug, or any pharmaceutical product, to market is long and costly.

Nevertheless, commercial sales from such drugs can generate huge sums: the two chemicals derived from rosy periwinkle bring in revenues of US$160 million per year. Large companies usually benefit the most from such projects while the local peoples and shamans get little in return. For example, virtually no money from the Vincristine (Oncovin) and vinblastine derived from the rosy periwinkle made it back to the country of origin, Madagascar. However, once the drug patent expired, Madagascar was able to begin exporting tons of crude periwinkle annually.

In the past such exploitation, known as biopiracy, was the rule. While drug companies raked in millions in revenue, the community that found the plant producing the drug was left with token baseball hats, beads, or aspirin as compensation. One of the biggest biopiracy coups occurred last century when the British smuggled (at least Brazilians allege) rubber tree seeds out of Brazil to their colony of Malaysia, ending the lucrative Amazonian monopoly on rubber.

In the 1990s a bitter patent battle has erupted between an American entrepreneur and COICA, an organizations representing indigenous peoples from the Amazon region, over ayahuasca or yagé. Yagé is a celebrated hallucinogenic, derived from a rainforest liana (Banisteriopsis caapi) and other plants, which is used ceremonially by Amazonians. The biopiracy incident was initiated in 1986 when American Loren Miller visited Ecuador and took a sample of yagé without permission and then acquired a patent from the U.S. government. Miller subsequently launched the International Plant Medicine Corporation to commercialize yagé for psychiatric and cardiac pharmaceuticals. COICA argued Miller had no right to patent a plant compound that has been used for generations by indigenous peoples. Complicating the debate was the refusal of the U.S. Senate to ratify the UN Convention on Biodiversity, which has been ratified by more than 100 countries including Ecuador, where the Yagé sample was acquired. The UN agreement includes the recognition of intellectual property rights of indigenous peoples. The U.S. Patent Office (USPTO) eventually overturned the patent in 1999, only reinstating it in 2001. The patent expired in 2003.

This exploitation without compensation has been the historical trend, although today there is more awareness on the need to consult with indigenous practitioners and ensure that benefits reach local people. Most tropical countries lack the expertise to identify, develop, and commercialize drugs derived from rainforest plants, so drug research and development will likely continue to be dominated by industrialized countries. However compensation for the country of the product's origin must be addressed if the sources of these products —the tropical rainforest—are to be preserved.

Several pharmaceutical companies have agreed to share revenues with local people. The drug Prostialin, isolated in 1984 from a Samoan rainforest tree, has exhibited strong activity against HIV in tests. With its discovery, the National Cancer Institute has guaranteed that part of the royalties from the sale of the drug will be returned to the Samoans. As a result, Samoa fiftieth national park was established to encourage local healers to use medicinal plants in a sustainable way, in order to pass their knowledge on to the next generation. Similarly, in 1991, Merck and Company invested $1 million in Costa Rica's National Biodiversity Institute (INBio) to assist in a cataloging and screening effort. The institute collects and identifies organisms, sending samples from the most promising species to Merck laboratories for medicinal assay. If the compounds prove useful and the resulting drugs make it to market, the Costa Rican government is guaranteed some of the royalties, which will be set aside for conservation projects.

    More information on medicinal plants >>

Review questions:

  • Why are plants a good source for medicines?
  • What is biopiracy?

Other versions of this page

spanish | french | portuguese | chinese | japanese

Continued / Next:

Medicinal plants (continued)

Other pages in this section:

Solutions Introduction
Sustainable Forest Products
Large-scale Forest Products
Medicinal Drugs
Logging (con't)
Conservation Priorities
Reserve Size & Valuation
Intergovernmental Institutions
Communication, Education
Indigenous people
- - - -
References (1)
References (2)
References (3)
References (4)
References (5)
Foods & Genetic Diversity
Medicinal Drugs & Pesticides
Logging (con't)
Increasing Productivity
Types of Reserves
Developing nations
International Organizations

- - - -
Kids version of this section
- How can we save rainforests?
- Education
- Rehabilitation
- Sustainable development
- Parks
- Eco-friendly companies
- Ecotourism
- What you can do

Selection of information sources

  • According to Cox, P.A. and Balick, M.J., ("The Ethnobotanical Approach to Drug Discovery," Scientific American, June 1994) fewer than 5% of tropical forest plants and 0.1% of animals have been screened for their chemical properties and medicinal values. However, Cox and Balick note that recently more pharmaceutical firms have entered the rainforest plant arena and today the National Cancer Institute screens rainforest species for anti-cancer and anti-HIV compounds.
  • The drug discovery process is also discussed in Cox, P.A. and Balick, M.J., ("The Ethnobotanical Approach to Drug Discovery," Scientific American, June 1994) and Cragg, G.M., Simon, J.E., Jato, J.G ("Drug Discovery and Development at the National Cancer Institute: potential for New Pharmaceutical Crops," Progress in New Crops. J. Janick (ed), ASHS Press, Arlington, VA. 1996).
  • Indigenous use of plants can provide an important clue in finding compounds with medicinal promise as presented by Schultes, R.E. and Raffauf, R.F., The Healing Forest: Medicinal and Toxic Plants of the Northwest Amazonia. Portland: Dioscorides Press, 1990; Cox, P.A. and Balick, M.J., "The Ethnobotanical Approach to Drug Discovery," Scientific American, June 1994; and Cox, P.A. and Elmqvist, T., "Ecocolonialism and Indigenous-Controlled Rainforest Preserves in Samoa," Ambio Vol. 26 No. 2, March 1997. In this regard, N. Myers (The Primary Source:Tropical Forests and Our Future, New York: W.W. Norton and Company, 1984) and W. Davis (One River, New York: Touchstone, 1996) discuss the tremendous library of botanical knowledge possessed by rainforest peoples. Myers notes than forest dwellers in Southeast Asia use 6,500 species, while northwest Amazonians use at least 1,300 plants for medicinal purposes.
  • The Anti-HIV compound Michellamine B derived from a liana in Cameroon is described in Cragg, G.M., Simon, J.E., Jato, J.G ("Drug Discovery and Development at the National Cancer Institute: potential for New Pharmaceutical Crops," Progress in New Crops. J. Janick (ed), ASHS Press, Arlington, VA. 1996).
  • Drugs derived from the rosy periwinkle generated over a billion dollars in profit for Eli Lilly & Co, yet Madagascar - the country from which the drugs originated - saw nothing in terms of revenue. This is mentioned in Robinson, K., "The Blessings of Biodiversity," Chronicle Foreign Services, 1/19/2000.
  • Biopiracy is discussed in LaFranchi, H., "Amazon Indians Ask 'Biopirates' to Pay for Rain-Forest Riches," Christian Science Monitor, 11/20/1997.
  • Some alternatives to biopiracy are mentioned in LaFranchi, H., "For US Company, Tribe Partnership Is Bottom Line," Christian Science Monitor, 11/20/1997 (Bixa orellana box) and Cox, P.A. and Balick, M.J., "The Ethnobotanical Approach to Drug Discovery," Scientific American, June 1994 (Prostialin from Somoa).
  • Stenson, A.J. and Gray, T.S. debate the merits of granting intellectual property rights to indigenous communities for their knowledge of genetic plant resources in "An Autonomy-Based Justification for Intellectual Property Rights of Indigenous Communities," Environmental Ethics, Vol 21, Summer 1999.
  • The INBio/Merck agreement in Costa Rica is reviewed by Tangley, L., "Cataloging Costa Rica's Diversity," BioScience, 40 (6): 633-636, 1990), E.O. Wilson (The Diversity of Life, Cambridge, Mass.: Belknap Press, 1992) and the World Resources Institute 1992.
  • Raven, P.H, estimates that 20-25% of the world's plant species will be extinct by the year 2015 should forest cover continue to be diminished by 1-2% every year in "Our Diminishing Tropical Forests," In BioDiversity, Wilson, E.O. and Peter, F.M., eds., National Academy Press, Washington D.C. 1988.

  • For kids

    Tour: the Amazon

    Rainforest news

    Tour: Indonesia's rainforests

     What's New
       The Canopy
       Forest Floor
       Forest Waters
       Indigenous People
       Saving Rainforests
       New Guinea
       Country Profiles
       Works Cited
       For Kids
       For Teachers
       Expert Interviews
       Rainforest News
      Forest data
       Global deforestation
       Tropical deforestation
       By country
       Deforestation charts
       Regional forest data
       Deforestation drivers
     XML Feeds

    Nature Blog Network

    Tropical Fish
    Kids' Site
    TCS Journal
    Topics | RSS

     Other languages
    Chinese (CN) (expanded)
    Chinese (TW)
    French (expanded)
    German (expanded)
    Japanese (expanded)
    Portuguese (expanded)
    Spanish (expanded)


    Photo store
    Mongabay gear

    Recent news

    Economic models for forests often neglect value of biodiversity
    (02/06/2015) Tropical forests provide countless goods and services that help sustain human life. Given the rapid conversion of forests to agricultural lands, scientists say it is critical that we prioritize conservation of forest ecosystems. While economists have attempted to quantify the economic value of tropical forests, these estimates may overlook the intricacies of the landscape. According to a recent study in Biological Conservation, economic analyses of forests tend to neglect areas containing high biodiversity.

    What we can learn from uncontacted rainforest tribes
    (11/26/2014) If you have ever wondered about the connection between hallucinogenic frogs, uncontacted peoples, conservation, and climate change — and who hasn't? — check out this TED talk from ethnobotanist Mark Plotkin. An ethnobotanist by training, Plotkin serves as President of the Amazon Conservation Team. Plotkin took a few minutes from his busy schedule to answer a few questions from Mongabay.

    Helping the Amazon's 'Jaguar People' protect their culture and traditional wisdom
    (02/11/2014) Tribes in the Amazon are increasingly exposed to the outside world by choice or circumstance. The fallout of outside contact has rarely been anything less than catastrophic, resulting in untold extinction of hundreds of tribes over the centuries. For ones that survived the devastation of introduced disease and conquest, the process of acculturation transformed once proud cultures into fragmented remnants, their self-sufficiency and social cohesion stripped away, left to struggle in a new world marked by poverty and external dependence

    More news on medicinal plants

    More rainforest news

    what's new | rainforests home | for kids | help | madagascar | search | about | languages | contact

    Copyright Rhett Butler 1994-2015

    Carbon dioxide (CO2) emissions generated from operations (server, data transfer, travel) are mitigated through an association with Anthrotect,
    an organization working with Afro-indigenous and Embera communities to protect forests in Colombia's Darien region.
    Anthrotect is protecting the habitat of mongabay's mascot: the scale-crested pygmy tyrant.

    "Rainforest" is used interchangeably with "rain forest" on this site. "Jungle" is generally not used.